Planetary Volatiles Extractor (PVEX) for In Situ Resource Utilization (ISRU) and Delivering Volatiles to GCMS

Kris Zacny, Gale Paulsen, Zach Mank, Vincent Vendioloa – Honeybee Robotics

Jackie Quinn, Jim Smith, Aaron Paz - NASA KSC

Julie Kleinhenz, NASA JSC

ESF Moffett Field, CA 23-25 July 2019

2 Steps in ISRU Process

1. Prospecting:

- Determine "water reserves"
- Reserves raw material <u>in-situ</u> that is feasible to extract and processed with proposed mining approach.
- Prospecting needs to answer:
 - How much
 - Where
 - How to extract etc.

2. Production:

 Extraction and processing (if needed) of the raw material to form final product (in our case it's water)

Two considerations...

It is not just water

Abundances of volatile compounds in the ejecta plume of LCROSS impact (Colaprete, 2010)

Compound	Molecules cm ⁻²	% Relative to H ₂ O(g)*		
H ₂ O	5.1(1.4)E19	100.00%		
H ₂ S	8.5(0.9)E18	16.75%		
NH ₃	3.1(1.5)E18	6.03%		
SO ₂	1.6(0.4)E18	3.19%		
C ₂ H ₄	1.6(1.7)E18	3.12%		
CO2	1.1(1.0)E18	2.17%		
CH ₃ OH	7.8(42)E17	1.55%		
CH ₄	3.3(3.0)E17	0.65%		
ОН	1.7(0.4)E16	0.03%		

Recommendation:

Need Mass Spectrometer to accurately determine all volatile species.

Net days of sunlight

Depth to stable ice

LRO LEND neutron data

LOLA DTM slope data

Recommendation:

- Need more than one data point (rover, several landers)
- Need Neutron Spectrometer and Near-IR Spectrometer
- Need excavation system to delivery samples

Concern #1: Excavation of Icy Soil

Courtesy Jared Atkinson

Strength of icy-soil, >3 wt%

Recommendation:

Need Percussive drill

Concern #2: Volatiles capture

Sublimation rate

Sublimation rate for 1 micron ice particle

Andreas, 2006

Tests at Lunar conditions (NASA GRC)

• Soil:

- NU-LHT-3M with 5 water wt%
- Vib. compacted to ~1.5 g/cc
- Temp: -140 C to 90 C

Drill Test Results

Recommendation:

Need fast sampler delivery system or volatiles delivery system

Solution: PVEx

Planetary Volatiles Extractor (PVEx)

- Hammer drill can cut strong material
- Coring auger captures regolith
- Swivel/slipring heats up and delivers volatiles

Drilling tests

Material		Ice, -20C	Texas LS	Indiana LS		NU-LHT-2M, 5 wt%, -20C	
Drill		LITA			TRIDE	NT	
Strength	MPa	5	23	45	45	5	
Rate of Penetration	cm/min	5.7	5	1.8	1.9	5.8	
Power (electrical)	W	246	242	142	141	180	

Tests in 5 wt% NU-LHT-2M, -20C

Drill data can provide wt% and form of water-soil

Volatile Delivery to MS (Prospecting)

PVEx

10cm Dry

5% Water by Wt. NU-LHT-2M

PVEx on Prospecting Rover

PVEx on CLPS Lander

Astrobotic

Volatile Collection (ISRU)

deltaPressure: 0.1 to 0.3 Pa

Summary of End-to-End Tests

- NU-LHT-2M
- 1.6 g/cc
- -20C
- 1.5 g/cc
- Chamber pressure: 6 torr

Water Sat	Drilling		Water Extraction				
Wt%	ROP	Power (Elec.)	Water extracted		Heating		
%	mm/s	W	g	%	W	min	Eff (%)
5	1.24	89	4.0	6.8	100	90	4.0
5	0.98	-	5.1	7.4	100	120	3.8
6	0.86	108	30	43	50	720	7.5
4	1.76	84	15.4	56	100	90	15
5	1.74	70	15.1	44	120	60	19

PVEx Miner

Conclusions

delivery

Thank you!

The work has been supported by NASA SBIR program

